
International Journal of Solids and Structures 40 (2003) 4181–4190

www.elsevier.com/locate/ijsolstr
An experimental method for evaluating SIF distributions
during crack turning in non-brittle materials

C.W. Smith *

Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University,

219 Norris Hall, Blacksburg, Virginia 24061-0219, USA

Received 10 March 2003; received in revised form 10 March 2003
Abstract

After briefly describing an experimental modelling method consisting of a marriage of frozen stress photoelasticity

with the Griffith–Irwin equations of fracture mechanics, the method is applied to a generic motor grain model con-

taining part through cracks emanating from the corner of a fin tip under internal pressure to determine approximate

crack shapes and stress intensity factor values at maximum crack depth for various penetration depths. The role of

shear modes during crack turning is described.
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1. Introduction

Since two well crafted papers by Cotterell (1965, 1966) describing crack types and paths in the mid 1960s,

most of the literature concerning mixed mode effects on crack growth was directed towards the esta-
blishment of fracture criteria. Then in 1979, Cotterell and Rice (1980) provided an analysis which described

the role of the shear mode in crack kinking, or turning. Then, Rubenstein (1991), guided by experiments,

postulated an analysis for the turning of cracks in non-brittle materials. All of the analysis cited above was

directed towards two dimensional problems, although Cotterell, in his earlier work, conjectured that his

descriptions of crack growth might be extended to three dimensional problems. Recently, Leblond (1997)

and Leblond et al. (1997) provided a three dimensional framework for use in analyzing such problems

within linear elastic fracture mechanics (LEFM) constraints when the crack configuration is known.

Beginning in the late 1960s, the writer and his graduate students began to study a way to provide ex-
perimental code validation for the many numerical solutions to three dimensional fracture problems which

were appearing in the literature. The vast majority of these solutions were based upon LEFM and crack

growth was artificially prescribed in the solutions. Due to the substantial cost of full scale testing on such
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structures as aircraft, missiles, nuclear pressure vessels and ships, a laboratory based model analysis was

focused on in order to provide a bridge between the numerical analyst and the full scale test of structure or

their components with the idea of reducing the extent of the latter in code validation programs.
2. Methods of analysis

The aim of the development of such a ‘‘bridge’’ was to create a marriage between known experimental

methods and LEFM, with technical refinements being introduced as needed. The experimental methods
consist of the use of frozen stress photoelasticity and high density moir�ee interferometry, the former of which

is focused upon here.

The frozen stress method was introduced by Opel (1936). It involved utilizing the fact that some

photoelastic materials exhibited essentially diphase mechanical response to change in temperature. Stress

freezing materials possess the special characteristic of possessing a temperature, Tc, called the critical

temperature, which is in the neighborhood of the glass transition temperature of the material. In simplest

concept, if one visualizes the material as Kelvin-like in its behavior (Fig. 1) it will be slightly viscoelastic at

room temperature, but when heated above Tc, the viscous coefficient (l) vanishes and the material becomes
linearly elastic with an elastic modulus of about one six hundredth of it�s room temperature value and the

material becomes incompressible. Furthermore, the stress fringe sensitivity of the material above Tc in-

creases to a value of some 20 times the value at room temperature. When a photoelastic model of such a

material is heated above Tc, and then loaded to produce stress fringes, it is then cooled very slowly back to

room temperature retaining the fringes produced above Tc. Then, upon unloading, fringe recovery will be

small due to the relatively low fringe sensitivity at room temperature, and the fringes produced above Tc will
be retained along with the deformations but no live stress results. Consequently the model may be sliced

into thin slices and analyzed as in two dimensional photoelasticity, but with the three dimensional effect
embedded in the fringes. Since the slices are thin, and the number of fringes will be proportional to the slice

thickness, it is necessary to optically increase the number of fringes for accurate analysis. Two standard
Fig. 1. Kelvin material.
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methods, Post�s (1966) Partial Mirror Fringe Multiplication and the Tardy (1929) Method are applied in

tandem for this purpose.

Cracks are introduced into the model prior to heating. Artificial cracks are thin slots terminating at a

point and natural cracks are made by striking a blade held against the surface of the model. A crack then
emanates from the blade tip into the model and may be grown above Tc to desired size. The dimensions of

the latter crack cannot be controlled but are believed to follow the path of fatigue cracks in metals growing

stably. The load is then reduced to about a third of the value for growing the crack and stress freezing is

carried out.

In order to convert the optical data embedded in the stress fringe patterns into the appropriate fracture

parameter, the Stress Intensity Factor (SIF), one combines the stress-optic law with the Griffith–Irwin

Equations for the near tip stress. This can be accomplished for all three local modes near the crack tip. The

relevant algorithms are described in Smith and Kobayashi (1993) and also in Smith (1993), and are briefly
described in Appendix A for Modes I and II.
3. Experiments

The applicability of the frozen stress approach to the determination of SIF distributions has been ap-

plied to a variety of problems Smith (2000). Recently, the Frozen Stress Method was used in order to study

the crack growth and SIF distributions in cracks emanating from the fin tip surface of a generic rocket

motor grain photoelastic model. Two dimensional experiments by AFRL at Edwards AFB suggested that

cracks tend to initiate at the locus along the fin tip where the main tip radius coalesces with a much smaller

corner radius. However, some manufacturers report cracks initiating on the axis of symmetry of a fin,
possibly resulting from imperfections collected there due to the casting process.

The present study included tests on six models of geometry identical to Fig. 2, with two cracks, each

analyzed independently in each model and with each cracked fin separated by an uncracked fin as shown.

Two types of natural starter cracks were employed. One type was located on the fin axis in a plane of

symmetry with respect to both the internal pressure loading and the model geometry. This type of crack,

referred to as a ‘‘symmetric’’ crack, remained planar during growth and exhibited only pure Mode I values

around the crack front. Moreover, it conformed to the definition of a Class I crack as described by Cotterell

(1965). The second type of crack emanated from the point of confluence of the main fin tip radius (R11 in
Fig. 2) with a much smaller edge radius (R1 � 3 of Fig. 2). This latter crack was non-planar and generally

contained, prior to turning, mixed mode SIF values at various locations along its border except near the fin

surface where Mode I prevailed. These cracks, due to turning, grew in arbitrary directions until turning

eliminated the shear mode effects and so were essentially Class II cracks as described by Cotterell (1965)

until the shear modes were eliminated, after which the cracks grew as Class I cracks exhibiting pure Mode I

loading. These latter cracks are referred to here as ‘‘off-axis’’ cracks and the present discussion will focus on

these cracks.

In the present study all off-axis cracks were analyzed for SIF values by using dimensions of planar
projections of the crack fronts as their semi-elliptical dimensions since the out-of-plane dimensions of the

crack surfaces were small (except for river markings), and eventually disappeared with the shear modes

during growth. The study covered a range of a=c (depth to half length) values of 0.50–0.92 and a range of

a=t (depth to thickness) values of 0.20–0.68.

Two principal types of off-axis cracks were observed and are pictured in Fig. 3. Model 4 depicts a slightly

non-planar starter crack followed by more pronounced turning during growth along the crack front as

indicated by the path of the centerpoint; said turning apparently due to Mode II. Moreover, at the crack

front, both Mode I and Mode II SIF values were obtained along the crack border. Model 8i shows an
additional effect. Radial river markings suggested the presence of a Mode III effect involving rather large



Fig. 2. Model dimensions and crack locations.
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deformations of part of a crack surface normal to the adjacent surface (as well as Mode II) in the region

between the fin surface and the final crack front. This effect appeared to be exacerbated by slight mis-

alignment of the starter crack blade in the fin surface. Shear mode effects from crack tilting are depicted

qualitatively in Fig. 4. At the stage of growth depicted in Fig. 3, no Mode II existed along the crack front.
Data and results at maximum depth of the cracks for the above noted models and other off-axis crack

models are presented in Table 1. Use of the algorithms for computing Fi is shown in Appendix A. Since the

river markings appeared to involve large deformations, no SIF calculations were made for any of the modes

in that region, confining such calculations primarily to maximum crack depth and near the fin surface.
4. Discussion

The symmetric cracks showed no shear mode or non-planar behavior, so results from these cracks are

not included. However, it was quite apparent that these cracks grew far more readily than the off-axis
cracks, and that the shear modes in the latter significantly slowed crack growth until the Class I condition

was achieved in them. In fact, this effect is pictured in Model 8i as a dimple in the crack front (Fig. 3) due to

the shear mode effect. In Model 4, the presence of Mode II retards the crack growth rather uniformly along

the crack front except near the fin surface where Mode II is absent. One may conjecture that, if Model 8i

were allowed to extend further once it has attained pure Mode I all along the crack border, the planar

projection of the crack front would gradually approach a semi-ellipse.

Due to the complexities in the geometry of the off-axis cracks, a number of simplifying assumptions were

made in achieving the determination of SIF values. To begin with, since none of the cracks deviated sig-
nificantly from a semi-elliptic shape when projected onto a plane, and since the out of plane excursions were



Fig. 3. Features of off-axis cracks initially normal to fin surface.

Fig. 4. Effect of misalignment and turning of starter crack blade.

C.W. Smith / International Journal of Solids and Structures 40 (2003) 4181–4190 4185



Table 1

Data and results

Loadsa Crack descriptionb (dimensions in mm) F1c

P ¼ 88:97 N; Pmax ¼ 0:049 MPa;

Pxf ¼ 0:035 MPa

Model 4 F1 ¼ 1:90;

F2 ¼ 0:48Off-axis inclined a ¼ 8:71; Da ¼ 2:18; c ¼ 11:15; Dc ¼ 3:02;

a=c ¼ 0:78; a=t ¼ 0:23

P ¼ 88:97 N; Pmax ¼ 0:103 MPa;

Pxf ¼ 0:049 MPa

Model 8i 1.99

Off-axis inclined a ¼ 12:50; Da ¼ 3:4; c ¼ 21:1; Dc ¼ 10:4;

a=c ¼ 0:59; a=t ¼ 0:34

P ¼ 88:97 N; Pmax ¼ 0:049 MPa;

Pxf ¼ 0:035 MPa

Model 6 1.72

Off-axis straight in a ¼ 11:60; Da ¼ 4:67; c ¼ 17:00; Dc ¼ 10:66;

a=c ¼ 0:68; a=t ¼ 0:31

Off-axis straight in a ¼ 11:23; Da ¼ 5:86; c ¼ 13:00; Dc ¼ 6:65;

a=c ¼ 0:86; a=t ¼ 0:30

1.86

P ¼ 88:97 N; Pmax ¼ 0:103 MPa;

Pxf ¼ 0:049 MPa

Model 7 1.58

Off-axis straight in a ¼ 15:60; Da ¼ 10:0; c ¼ 26:45; Dc ¼ 17:57;

a=c ¼ 0:59; a=t ¼ 0:42

Off-axis straight in a ¼ 13:90; Da ¼ 4:05; c ¼ 18:65; Dc ¼ 10:17;

a=c ¼ 0:74; a=t ¼ 0:37

1.87

P ¼ 88:97 N; Pmax ¼ 0:103 MPa;

Pxf ¼ 0:049 MPa

Model 8-s 1.93

Off-axis straight in a ¼ 7:90; Da ¼ 2:8; c ¼ 13:35; Dc ¼ 7:75;

a=c ¼ 0:59; a=t ¼ 0:21

P ¼ 88:97 N; Pmax ¼ 0:103 MPa;

Pxf ¼ 0:049 MPa

Model 9 1.50

Off-axis straight in a ¼ 25:10; Da ¼ 18:7; c ¼ 39:4; Dc ¼ 33:8;

a=c ¼ 0:64; a=t ¼ 0:68

a P ¼ axial compressive load; Pmax ¼ internal pressure to grow crack; Pxf ¼ stress freezing pressure.
b a¼ crack depth; Da¼ crack growth; c¼ half length of crack in fin tip surface; Dc¼half crack growth in fin tip surface.
c F1 ¼ Ki

ffiffiffiffi
Q

p
=Pxf

ffiffiffiffiffiffi
pa

p
, i ¼ 1; 2 at maximum depth;

ffiffiffiffi
Q

p
¼ approximation of elliptic integral of second kind; Q ¼ 1þ 1:464ða=cÞ1:65,

a=c6 1. All flaws were characterized as semi-elliptic flaws of depth a and length 2c. However, off-axis cracks were neither perfect semi-

elliptic nor planar.

Fig. 5. Features of cracks when blade was parallel to fin axis.
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Fig. 6. Variation of normalized Mode I SIF with crack penetration depth.
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small and virtually disappeared with crack growth after the shear modes were eliminated, they were treated

as semi-elliptic cracks and appropriate approximations were used as defined in the bottom of Table 1.

Secondly, when river markings occurred, they were taken as evidence of Mode III but suggested that

LEFM limits were exceeded. No account was taken of the possible interaction between Mode III and the

other modes in computing SIF values for the first two modes. Thirdly, very small misalignment of the crack

blade across the fin surface at the critical off-axis location appeared to exacerbate the development of river
markings as noted earlier. All of these assumptions may have been violated to some extent by the shorter

cracks during their turning. However, once the cracks grew away from the fin surface and turning was

completed, Class I behavior was restored and in this regime, results are likely not greatly affected by the

above approximations.

The last six cracks listed in Table 1 were made by holding the striking blade parallel to the fin axis rather

than normal to the fin surface. In these tests, slight damage occurred initially to the surface material but the

portion of the crack length which indicated turning was minimized leading to an earlier development of the

Class I crack along the crack front with only a couple of river marks (Fig. 5). By using only data from those
tests where the blade was held parallel to the fin axis at the off-axis position, the resulting Mode I SIF at

maximum depth showed a decreasing trend from a=t ¼ 0:2 to a=t ¼ 0:68 with data scatter of about 6%, the

order of accuracy of the test (Fig. 6). Crack growth in these cases in the depth direction was 30–75% of the

final crack length with the smaller growth cases deviating the most from the curve, and their crack shapes

showing the greatest deviation from a projected semi-ellipse. All of these cracks grew first primarily in the

fin surface until a certain length was reached after which they grew in the depth direction until the pressure

was reduced for stress freezing. In a few cases, crack growth continued in the depth direction until the outer

wall was penetrated without further growth in the fin surface. This suggests that growth in the fin surface is
limited by, perhaps, the body geometry. In three cases (two symmetric and one off-axis straight) where the

crack broke through to the outer surface, the value of a=c at break through was 0.8� 0.1.
5. Summary

An experimental study using the frozen stress method was conducted on generic photoelastic models of
cracked motor grain. The study focused on the process of crack turning in a non-brittle material. Com-
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plexities involved in the three dimensional turning effect including non-planar growth and river marking

development produced Class II crack growth until the shear modes involved in the off-axis cracks were

eliminated, resulting in Class I crack growth thereafter. Once Class I growth had been achieved, limited

data showed a gradual decrease in the normalized Mode I SIF (F1) with increasing crack depth from
a=t ¼ 0:3 to a=t � 0:7. Finally, when combined with results from symmetric cracks, it is clear that the latter

cracks, originating as Class I cracks are far more serious than those emanating from the analytically

predicted maximum stress at the off axis location.
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Appendix A

Mode I Algorithm

Beginning with the Griffith–Irwin Equations, we may write, for Mode I, for the homogeneous case,
rij ¼
K1

ð2prÞ1=2
fijðhÞ þ r0

ij ði; j ¼ n; zÞ ðA:1Þ
where rij are components of stress, K1 is SIF, r, h are measured from crack tip (Fig. 7), r0
ij are non-singular

stress components.

Then, along h ¼ p=2, after truncating rij
smax
nz ¼ K1

ð8prÞ1=2
þ r0 ¼ KAP

ð8prÞ1=2
ðA:2Þ
where s0 ¼ f ðr0
ijÞ and is constant over the data range, KAP ¼ apparent SIF, smax

nz ¼maximum shear stress in

nz plane.
Fig. 7. Near tip notation for Mode I.



Fig. 8. Determination of F1 from test data.
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Normalizing with respect to �rr,
)
KAP

�rrðpaÞ1=2
¼ K1

�rrðpaÞ1=2
þ

ffiffiffi
8

p
s0

�rr
r
a

� �1=2

ðA:3Þ
where (Fig. 7) a¼ crack length, and �rr¼ remote normal stress i.e KAP=ð�rrðpaÞ1=2Þ vs.
ffiffiffiffiffiffiffi
r=a

p
is linear.

From the stress-optic law, smax
nz ¼ nf =2t where, n¼ stress fringe order, f ¼material fringe value, and

t¼ specimen (or slice) thickness then from Eq. (A.2)
KAP ¼ smax
nz ð8prÞ1=2 ¼ nf

2t
ð8prÞ1=2
where KAP (through a measure of n) and r become the measured quantities from the stress fringe pattern at

different points in the pattern.

In the present study, instead of normalizing K with respect to �rrðpaÞ1=2, we have selected p
ffiffiffiffiffiffiffiffiffiffiffi
pa=Q

p
as the

normalizing factor where
ffiffiffiffi
Q

p
is an elliptic integral of the second kind approximated here, as shown in Table

1. An example of the determination of F1 in Table 1 from test data is given in Fig. 8.

Mixed Mode Algorithm

The mixed mode algorithm was developed (see Fig. 9) by requiring that:
lim
rm!0

Hm!H0
m

ð8prmÞ1=2
dðsÞmax

nz

dH
ðK1;K2; rm;Hm; sijÞ

� �
¼ 0 ðA:4Þ
Fig. 9. Determination of h0
m for mixed mode loading.
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which leads to
K2

K1

� �2


 4

3

K2

K1

� �
cot 2H0

m 
 1

3
¼ 0 ðA:5Þ
By measuring H0
m which is approximately in the direction of the applied load, K2=K1 can be determined.

Then writing the stress-optic law as
smax
nz ¼ fn

2t
¼ K�

AP

ð8prÞ1=2
where K�
AP is the mixed mode of SIF, one may plot K�

AP=ð�rrðpaÞ
1=2Þ vs.

ffiffiffiffiffiffiffi
r=a

p
as before, locate a linear zone

and extrapolate to r ¼ 0 to obtain K�. Knowing, K�, K2=K1 and H0
m, values of K1 and K2 may be determined

since
K� ¼ ½ðK1 sinH0
m þ 2K2 cosH0

mÞ
2 þ ðK2 sinH0

mÞ
2
1=2 ðA:6Þ
Knowing K� and h0
m, K1 and K2 can be determined from Eqs. (A.5) and (A.6). Details are found in Smith

and Kobayashi (1993).
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